Intermediates, catalysts, persistence, and boundary steady states.
نویسندگان
چکیده
For dynamical systems arising from chemical reaction networks, persistence is the property that each species concentration remains positively bounded away from zero, as long as species concentrations were all positive in the beginning. We describe two graphical procedures for simplifying reaction networks without breaking known necessary or sufficient conditions for persistence, by iteratively removing so-called intermediates and catalysts from the network. The procedures are easy to apply and, in many cases, lead to highly simplified network structures, such as monomolecular networks. For specific classes of reaction networks, we show that these conditions for persistence are equivalent to one another. Furthermore, they can also be characterized by easily checkable strong connectivity properties of a related graph. In particular, this is the case for (conservative) monomolecular networks, as well as cascades of a large class of post-translational modification systems (of which the MAPK cascade and the n-site futile cycle are prominent examples). Since one of the aforementioned sufficient conditions for persistence precludes the existence of boundary steady states, our method also provides a graphical tool to check for that.
منابع مشابه
Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins.
Heme/porphyrin-based electrocatalysts (both synthetic and natural) have been known to catalyze electrochemical O2, H(+), and CO2 reduction for more than five decades. So far, no direct spectroscopic investigations of intermediates formed on the electrodes during these processes have been reported; and this has limited detailed understanding of the mechanism of these catalysts, which is key to t...
متن کاملThe Effect of Coking on Kinetics of HDS Reaction under Steady and Transient States
A study was made of the coking of a commercial fresh sulfide Ni-Mo/Al2O3 catalyst in a fixed-bed reactor. The catalyst was coked using different coke precursors in the gas oil under accelerated conditions at temperatures of 400 to 450°C to yield different deactivated catalysts containing 2-20 wt% C. Two cases were studied; crushed catalyst without diffusional ...
متن کاملComparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV–vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry
The surface chemistry of adsorbed isopropoxy groups on supported vanadia–alumina and vanadia–silica catalysts was investigated with multiple in situ spectroscopic techniques. The in situ FT-IR, Raman and UV–vis spectroscopic measurements provided molecular level information about the surface intermediates and the surface vanadium oxide species as a function of different conditions. The spectros...
متن کاملThe origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation
The strong in ̄uence of the oxide support upon the turn-over frequency (TOF) of methanol oxidation over supported metal oxide catalysts has been well documented in recent years. However, the mechanistic origins (adsorption equilibrium of methanol to methoxy species, rate-determining methoxy surface decomposition, or product desorption equilibrium) of this interesting phenomenon are not completel...
متن کاملRich Dynamics of Gause-type Ratio-dependent Predator-prey System
Ratio-dependent predator-prey models are increasingly favored by field ecologists as an alternative or more suitable ones for predator-prey interactions where predation involves searching process. However, such models are not well studied mathematically in the past. In our recently work, we have shown that such models exhibit much richer dynamics than the traditional ones. This is especially tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of mathematical biology
دوره 74 4 شماره
صفحات -
تاریخ انتشار 2017